Lesson Plan (2023-2024 Even Semester)

Professor – Ms. Kanika Sikri

Class and Section- B.Sc. II (medical and non medical) IV semester Subject-Physical Chemistry (Feb to May 2024)

Week/Month	Name of Topics
1 week Feb	Student will be able to learn and define Thermodynamics, Second
	law of thermodynamics, need for the law, different statements of the
	law, Carnot's cycles and its efficiency, Carnot's theorem,
	Thermodynamics scale of temperature.
2 week Feb	Student will be able to learn and define Concept of entropy – entropy
	as a state function, entropy as a function of V & T, entropy as a
	function of P & T, entropy change in physical change, entropy as a
	criteria of spontaneity and equilibrium.
3 week Feb	Student will be able to learn and define Third law of
	thermodynamics: Nernst heat theorem, concept of residual entropy.
4 week Feb	Student will be able to learn and define evaluation of absolute
	entropy from heat capacity data, Gibbs function (G) and Helmholtz
	function (A) as thermodynamic quantities.
1 week	Student will be able to learn and define G as criteria for
March	thermodynamic equilibrium and spontaneity, its advantage over
	entropy change. Variation of G with P, V and T. Revision and Class
	Test of Chapter thermodynamics.
2 week	Student will be able to learn and define Electrochemistry ,Electrolytic
March	and Galvanic cells - reversible & irreversible cells, conventional
	representation of electrochemical cells.
3 week	Student will be able to learn and define Calculation of
March	thermodynamic quantities of cell reaction, types of reversible
	electrodes - metal- metal ion, gas electrode, metal -insoluble salt-
	anion and redox electrodes.
4 week	Student will be able to learn and define Electrode reactions, Nernst
March	equations, derivation of cell EMF and single electrode potential.
1 week April	Student will be able to learn and define Standard Hydrogen electrode,
	reference electrodes, standard electrode potential.
2 week April	Student will be able to learn and define sign conventions,
	concentration cells with and without transference, liquid junction
	potential and its measurement.
3 week April	Student will be able to learn and define Applications of EMF
	measurement in solubility product.
4 week April	Student will be able to learn potentiometric titrations using glass
	electrode.
1 week May	Numerical Problem will be discussed.
2 week May	Revision and Class Test of Chapter Electrochemistry.